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ABSTRACT  
 
This report reviews work on the identification of people in video recordings by their gait, or 
walking style. It considers the adjustments needed when the subjects walk other than straight 
across the image and may not offer the convenient side (fronto-parallel) view. It describes a study 
of this case using video sequences of walking people, and concludes that the available 
measurements of gait, apart from head height, are of limited use. 
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Executive Summary  
 
 
The automatic analysis of gait, or walking style, of people in video imagery is of great 
interest as a possible means of matching them with people recorded in a database, at 
another time or by another nearby camera in a security CCTV network. Existing reviews 
indicate that gait has been studied in imagery for over twenty years. Gait has the 
advantage that some aspects of it can be studied in distant views where other features 
such as the face are not sufficiently resolved for identification. 
 
Most human identification is an attempt to find the best match between a single person 
and many people in a database. In the security situation it is just as likely to be a 
comparison between two people who are otherwise new. 
 
Gait is easiest to analyse when the person walks straight across the image and is viewed 
from the side. Different features of gait appear in a front or rear view, and all features may 
be present but in weaker form when viewed from intermediate angles. Viewing subjects 
from above head height adds useful information for the analysis of gait. 
 
Other work on gait identification is reviewed, attention being paid to methods that allow 
for arbitrary points of view. Some of these methods are incomplete for gait analysis, but 
could form part of the process. 
 
An experimental study using video sequences of people walking is described. The study 
has shown that the only gait characteristic that is very useful in distinguishing people and 
measurable from an above-head camera in any direction is the height. 
 
Any further investigation of the use of other gait characteristics will require more 
extensive test data and more reliable ways of distinguishing walking persons from their 
backgrounds.  
 



UNCLASSIFIED 

UNCLASSIFIED 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally blank 
 



UNCLASSIFIED 
 

UNCLASSIFIED 

Author 
 

 
 

Robert Whatmough 
Intelligence, Surveillance and Reconnaissance Div. 
 
Robert Whatmough was employed as Cadet Defence Science at the 
Weapons Research Establishement, Department of Supply, later 
DSTO. He was awarded the degree of B Sc with honours in 1969. 
 
Until 1985 he was Experimental Officer, Scientific Officer then 
Research Scientist in Computing Services Group. His work included 
mathematical data handling techniques, random number generation, 
printed circuit board design, simulation of batch computer operations, 
curve fitting and smoothing, time-critical computing, thermal 
modelling, computer graphics and display, remote sensing and image 
processing, and assistance of computer users with complex 
computing problems. 
 
Since 1986 he has worked in various Divisions in fields related to 
image processing. These have included restoration, enhancement and 
classification of visual, multispectral and synthetic aperture radar 
images, geographic information systems, prediction of oblique aerial 
and navigation radar images, matching models to objects in images, 
shape inference from perspective distortion and video sequences, 
registration and mosaicking of aerial images, and enhancement of 
video sequences. 

____________________ ________________________________________________ 
 
 



UNCLASSIFIED 

UNCLASSIFIED 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally blank 
 



UNCLASSIFIED 
DSTO-TR-2684 

Contents 
 

1. INTRODUCTION............................................................................................................... 1 

2. CAMERA HANDOVER AS A MATCHING PROBLEM............................................ 1 

3. THE EFFECTS OF CHANGING VIEW .......................................................................... 2 

4. REVIEW OF OTHER WORK............................................................................................ 3 
4.1 Preparation of targets ............................................................................................... 3 
4.2 Camera setup ............................................................................................................. 3 
4.3 Segmentation ............................................................................................................. 3 
4.4 Extraction of feature vectors.................................................................................... 4 
4.5 Cycle detection .......................................................................................................... 5 
4.6 Incorporating other data .......................................................................................... 5 
4.7 Allowing for different view points ....................................................................... 5 

5. SELECTION OF A VIEW-INDEPENDENT APPROACH .......................................... 7 

6. SILHOUETTE EXTRACTION.......................................................................................... 7 
6.1 Raw detection ............................................................................................................ 8 
6.2 An orthogonal least-squares method .................................................................... 9 
6.3 Refinement............................................................................................................... 10 

7. THE GAIT ANALYSIS METHOD................................................................................. 10 
7.1 Background of the method.................................................................................... 10 
7.2 Footprint detection ................................................................................................. 11 
7.3 Gait features............................................................................................................. 12 
7.4 Gait analysis of shadows....................................................................................... 13 

8. TESTS ON TREADMILL SEQUENCES....................................................................... 14 
8.1 Methods .................................................................................................................... 14 
8.2 Results....................................................................................................................... 15 

9. TESTS ON CONVENTIONAL SEQUENCES............................................................. 15 
9.1 Data collection ......................................................................................................... 15 
9.2 Confusion analysis ................................................................................................. 16 
9.3 Results....................................................................................................................... 17 

10. DISCUSSION .................................................................................................................... 17 

11. CONCLUSIONS................................................................................................................ 17 

UNCLASSIFIED 
 



UNCLASSIFIED 
DSTO-TR-2684 

UNCLASSIFIED 
 

12. REFERENCES .................................................................................................................... 18 

13. ACKNOWLEDGMENTS................................................................................................. 20 

 
 
 



UNCLASSIFIED 
DSTO-TR-2684 

1. Introduction  

The automatic analysis of gait, or walking style, of people in video imagery is of great interest 
as a possible means of matching them with people recorded in a database, at another time or 
by another nearby camera in a security CCTV network. 
 
Existing reviews (e.g. Gavrila, 1999; Moeslund & Granum, 2001; Wang et al, 2003) indicate that 
gait, as well as other forms of human movement and interaction, have been studied in 
imagery for over twenty years. The studies of gait have been inspired by reports of 
psychological experiments in which participants identified human movement by the motions 
of lights attached to selected points of people walking in the dark, or identified their friends 
by their gait alone. Gait also has the advantage that some aspects of it can be studied in distant 
views where other features such as the face are not sufficiently resolved for identification. 
 
This report is concerned mainly with matching people between video sequences taken by 
different cameras at about the same time, the so-called “camera handover problem” (Redding 
et al, 2008). Gait can contribute to the evidence for or against this match. Gait is most easily 
analysed when people walk straight across the view, and the view is called “fronto-parallel”. 
In realistic security monitoring situations, some people will walk in other directions, directly 
or obliquely, towards or away from the camera, and important features of their gaits will not 
be so easily detected, so the more general view needs to be considered. 
 
In the rest of this report, Section 2 attempts to position the camera handover problem among 
the standard identification problems. Section 3 considers the difficulties that arise from less 
convenient camera viewpoints. Section 4 gives a partial review of other work in this area. 
Section 5 introduces a more view-independent approach. Section 6 considers the difficulties of 
locating a walking person accurately in a frame. Section 7 describes the view-independent 
method and a variation applicable to overhead views of shadows cast by walkers. Sections 8 
and 9 report tests on real data.   A final discussion and conclusions follow. 
 
 

2. Camera handover as a matching problem 

Human identification, whether done using gait or other characteristics, is most often a 
comparison of a new record (the “probe”) with records of known people in a database (the 
“gallery”). The goal of comparison is classified as one of the following: 
1. Identification: The person in the probe is known to be in the gallery. Which one is it? If 

there is uncertainty, which few could it be? The results will be judged by how often the 
correct person is picked (the “recognition rate”), how often it is among the few as a 
function of the number of suggestions allowed (called the “cumulative match score”, 
CMS), the number of correct matches vs. the number of incorrect ones as a function of 
some parameter (the “receiver operating characteristic”, ROC), or the pattern of correct and 
incorrect identifications (the “confusion matrix”). 

2. Validation or verification: The person in the probe claims to be one, possibly a particular 
one, in the gallery. Is that possible? The results can be judged by the ROC or the CMS. 
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3. Watching: The person in the probe is possibly one in the gallery. Is that so, and if so which 
one? The results can be judged by the ROC. 

There may not be much difference between goals 2 and 3 in practice. Perhaps the comparison 
will be stricter for goal 2, but different prior probabilities of match and different costs of errors 
will affect the analysis. 
 
In the case of camera handover, there is no gallery to start with. Rather there are two probes, 
and a person of interest in one is to be detected in the other if also present there. This goal 
resembles goals 2 and 3 above, with a gallery of one. Perhaps the timing and direction of 
movements at the two cameras will indicate which goal is more similar. When people of 
interest are completely unknown in advance, any collection of gallery data will be of use only 
in an experiment to test how much real and known people vary from one sequence to another 
and differ from person to person, and thence how strict the matching process should be. 
 
 

3. The effects of changing view 

The convenient horizontal and fronto-parallel view of a person walking before a stationary 
camera shows a number of features that can be measured and used for identification. Each 
foot in turn is raised from the ground, swings forward past the other and strikes the ground 
again, then remains more or less at rest for a time. After half the cycle (unless there is a limp) 
the silhouette repeats its shape sequence though the legs have swapped their roles. The length 
of the pace (“stride”) and the number of paces in a given time (“cadence”) can be measured 
and the subtler differences of leg motion are visible. Vertical motion of the head and forward 
or backward leaning of the torso are clear. The arms may swing in a characteristic fashion, 
though carrying objects such as bags or using a mobile phone can have profound effects. 
 
When the walk is towards or away from the camera, most of the movement is in these same 
directions and may be difficult to detect at all in the silhouette or in the details of the clothing. 
The feet may not be lifted far enough from the ground for the vertical motion to be detected in 
a distant view; the rise and fall of the head and the swinging of the arms may remain more 
obvious. The shape sequence repeats after half a cycle but in mirror image. Progress may be 
evident only from a slow change in size of the figure, and stride may be hard to estimate. It is 
left to finer details such as the alternate exposures of the soles to the rear, changes in the 
wrinkle patterns of loose clothing and shadows cast by one leg on the other or between torso 
and arms to reveal the motion and its cadence. The roll of the hip (which rises on the side of a 
leg that is in contact with the ground, sometimes with an initial jerk as the heel strikes, and 
falls on the other side where the leg swings forward) will be much easier to detect at this 
orientation, but may require good resolution and contrasting upper and lower clothing near 
the waist (or a contrasting belt) to reveal it. Swinging the arms across the direction of walk 
instead of parallel to it will also be more obvious. 
 
At intermediate angles, the characteristics visible from the side and those visible from the 
front or rear may all appear but in weaker form. The symmetry is gone, and the legs may 
cross over at times that are not equally spaced, or not at all. The cadence may still be clear but 
an estimate of stride may require one of the direction of walk. 
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Surveillance cameras are often installed above the head levels of passing people, so they face 
somewhat below the horizontal. This fact can help resolve some of the ambiguities of a 
horizontal view. People walking towards or away from the camera move respectively down 
or up the image, perhaps slowly. If suitable calibration is performed when the camera is set 
up, the mapping from image pixel to ground position is known and stride and direction can 
be estimated for any walk from the sequence of foot resting positions, once these are decided 
from the subject’s motion. 
 
 

4. Review of other work 

This section reviews some of the work done on the various steps of gait analysis that is 
relevant when more general camera positions are to be allowed. The review is not complete. 
The other reviews mentioned in the Introduction can supply references to more work in this 
area. 
 
4.1 Preparation of targets 

Some researchers describe experiments where human subjects were marked at key points on 
their clothing, or asked to wear particular clothing, to simplify their detection and movement 
analysis. This is appropriate for medical diagnostic applications of gait analysis, but not for 
security applications. 
 
4.2 Camera setup 

Some authors (e.g. Knossow et al, 2006) describe experiments where several cameras were 
used simultaneously and their outputs were combined to give better 3-D constructions. 
Others (e.g. Wang et al , 2002) used several cameras quite separately to test how well their 
algorithms worked at different angles of view. Some (e.g. Kuno et al, 1996, Han et al, 2005) put 
records of the same subject walking in different directions in the gallery so that a match with 
any one view of a person was sufficient for identification. 
 
4.3 Segmentation 

The humans in a scene must be separated from the background, from their own shadows, 
from one another when several are present even perhaps in a crowd, and from other moving 
objects such as animals or vehicles. Many researchers have, however, assumed simple 
scenarios with a single moving human and a stationary background. 
 
The usual approach to separating moving objects from a stationary background is to find an 
average over frames (often the median) and then to detect which pixels in which frames differ 
significantly in colour from the average for the same pixels (e.g. He & Debrunner, 2000). 
Sometimes a least-median-of-squares value is used instead of the median (Wang et al , 2002). 
Various forms of filtering can be used before estimating the background or after classifying 
pixels to improve the segmentation accuracy. Size constraints can be applied to distinguish 
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humans from other objects, provided that distances to objects do not vary too much. The 
process will need to be adaptive if lighting conditions change over a long recording period. 
 
If a human casts a shadow on the background, this can be absorbed into the background, 
using colour normalisation (e.g. Bobick & Johnson, 2001). Then the shadow is not counted as 
part of a foreground object despite its movement. 
 
The human, once located, can be treated as a mere silhouette whose changing shape is to be 
analysed, or as a textured object with features to be retained for further matching. Many 
authors have reported useful gait identification by the silhouette alone, and most take this 
approach (Nixon et al, 2006). 
 
4.4 Extraction of feature vectors 

Gait matching methods differ mostly in how image sequences (binary or otherwise) are 
reduced to vectors that retain the essential features while removing superfluous ones and 
allowing fast comparisons. Most of them limit how much gait information can be extracted, 
especially when the view is not fronto-parallel. 
 
Typically, the ranges of X and Y coordinates in the human segment (its “bounding box”) are 
found first. The bounding boxes in different frames are usually rescaled vertically to match 
and shifted horizontally and vertically to align, removing position and size differences. They 
may be rescaled horizontally as well to reduce shape differences. Possibilities for the next step 
include: 
 
1. Using the bounding box contents as they are (Huang et al , 1998) 
2. Using the bounding box contents for a few “key frames” (those showing the instants when 

legs were passing each other or both feet were on the ground) (Collins et al, 2002) 
3. Summing the binary silhouettes over frames getting the “gait energy image” (Han et al, 

2005) 
4. Using only the lower (leg movement) part of the gait energy image (Bashir et al, 2008) 
5. Taking the Discrete Fourier Transform of binary silhouettes over time and retaining the 

first few frequency coefficients for each pixel (Akihara et al, 2006) 
6. Summing the binary silhouettes over rows and over columns separately giving two two-

dimensional “frieze patterns” (Lee et al, 2007) 
7. Dividing the bounding box into fixed-size parts and measuring the widths of the silhouette 

within them (Kuno et al, 1996) 
8. Dividing the bounding box into fixed-size parts, using their corners or centres to represent 

body points and measuring the distances between them (Bobick & Johnson, 2001) 
9. Representing the silhouette as a sequence of boundary points (Wang et al, 2002) 
10. Combining the silhouettes into a space-time surface and finding the extreme points of its 

curvature (Yilmaz & Shah, 2008) 
11. Fitting the silhouettes with a three-dimensional model and recording model parameters 

(e.g. Knossow et al, 2006; Bouchrika & Nixon, 2007; Brubaker et al, 2007) (Not all these 
authors completed the extraction of gait parameters from their fitted models.) 
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Further reduction of dimensionality can be done by Principal Component analysis (e.g. 
Bhanu, 2007), Linear Discriminant Analysis and Relevance Component Analysis (e.g. Tan et al, 
2007), Local Linear Embedding (e.g. Li et al, 2005) or Latent Variable Methods (e.g. Cheng et al, 
2008). These methods require a training phase using gallery entries to decide how many 
dimensions, and which ones, should be retained for the most reliable identification. The 
training does the work of deciding what it is that varies from one gait to another, something 
that may not be obvious to the human observer. 
 
If the silhouettes are not resized and aligned first, summing them over time produces an 
image in which the largest values occur at the places where the feet rested on the ground. If 
these can be related to ground positions, they yield a measure of stride, and also cadence if the 
timings of passages are retained. The procedure can be refined by counting only the pixels in 
each frame near corners of the silhouette edge in that frame (e.g. Bouchrika & Nixon, 2007). 
 
4.5 Cycle detection 

The gait cycle (of two paces) needs to be distinguished at some stage, either before feature 
vector extraction (so that averages over time are taken over an exact number of cycles) or after 
it (so that measurements can be made at the relevant times to estimate the cadence and other 
parameters). The distinction must be made using preliminary measurements of foot position 
or separation, the minimum and maximum widths of the silhouette at foot level, or some 
other measure of similarity between frames. 
 
4.6 Incorporating other data 

Some authors considered the use of other data such as face appearance as well as gait (e.g., 
Zhou & Bhanu; 2008, Shan et al, 2007; Huang et al, 1998). While simple combination rules such 
as “A mismatch of any type is a mismatch overall” are useful, combination was usually done 
by concatenating feature vectors or by combining principal component coefficients using a 
more sophisticated method such as Canonical Correlation Analysis.  
 
4.7 Allowing for different view points 

Most authors assumed that the view was fronto-parallel in their analyses, though some 
included different view points in the gallery, to be matched in different cases. One paper 
measured the rapidly declining performance of two methods when the view point in the 
probe moved away from the fronto-parallel direction used in the gallery (Bashir et al, 2008). 
 
Li et al (2005) claimed that when they reduced silhouettes to one dimension (using Local 
Linear Embedding, LLE), the single coordinate related to body extent in a view-independent 
way. They further claimed that a higher-dimensional LLE representation is independent of 
translation, rotation and scale, so it was a good basis for further work on view independence. 
 
Yilmaz & Shah (2008) claimed that their process of constructing a surface in space-time from 
all silhouettes had a view-point dependence that was eliminated by later steps of their 
method. They proved this for the case where a camera sees the same points of a three-
dimensional object from each view point, but failed to note that cameras at different positions 
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see different points of an object’s surface as points on its silhouette. Thus their claim of view-
point independence fails. 
 
Bobick & Johnson (2001), having chosen body points whose identification is not very sensitive 
to the view point, used some of their measurements between them to correct others and 
reduce the effect of changing view point. 
 
Rao & Shah (2001), who were trying to recognise hand actions rather than gaits, tracked the 
centroid of the fastest moving region of skin colour, identified points of maximum curvature 
in its space-time path and formed lists of signs of direction changes at these points. If two lists 
matched, they constructed a matrix from the trajectories and checked its rank, in a manner 
related to the factorisation method of structure-from-motion reconstruction (e.g. Tomasi & 
Kanade, 1992), to confirm the match. They argued that the list of signs was not affected by 
most changes of camera setup. Parts of their approach could be useful once particular points 
on a walking person, especially hip joints, knees and feet, are identified. 
 
Tresarden & Reid (2008), who were dealing with other body actions as well as walking, used a 
structure-from-motion factorisation algorithm that depended on symmetry constraints (such 
as legs of equal length) rather than rigidity to locate joints in space. They depended on 
markers on joints and did not go on to identify the actions, but their approach might work on 
features detected from silhouettes. 
 
Spencer and Carter (2005) used another form of shape-from-motion reconstruction in which 
periodicity of gait, constancy of limb lengths and movement of limbs in parallel planes are all 
assumed. The assumptions are not always correct (arms sometimes being swung at an angle, 
for example), but the method suggests another variation. If walking is truly periodic, frames 
selected at the same point in many cycles should show an apparently rigid body in linear 
motion past the camera. If the person is not distant, these frames might be used to perform a 
simple structure-from-motion reconstruction by factorisation. The same process repeated at 
other points in the same cycles would provide one cycle’s worth of structures. After suitable 
alignment, these too could allow temporal analysis of the gait. Allowance might need to be 
made for timing fluctuations using “time warping” (e.g. Kaziska & Srivastava, 2006). 
 
A fairly crude approach to view invariance is to assume that the human body is two-
dimensional, lying in its sagittal plane. If the actual direction of walk can be estimated, the 
change in silhouette can be adjusted using an affine transformation. Kale et al (2003) took this 
approach, using the overall direction of motion and camera calibration to get the walk 
direction. 
 
Ben Abdelkader et al (2002) set up their camera at an elevated position and used knowledge of 
camera calibration to relate image coordinates to ground positions. They located the feet when 
they rested on the ground and deduced enough of the body position to determine stride, 
cadence, and the mean and amplitude of fluctuation of head height.  
 
Akihara et al (2006) trained their method with different directions of walking to find a 
transformation of their feature vector that allowed for differences in view point. This 
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transformation changed the view point to either fronto-parallel or front-rear, whichever was 
nearer, these two views then having to be treated separately. 
 
Any of the methods described in Section 4.4 that fit three-dimensional models could form the 
basis of a view-independent gait identification system. The fitted model moves, and its motion 
relative to its own orientation must be reduced to some suitable vector of gait parameters for 
matching with models fitted to other sequences. 
 
 

5. Selection of a view-independent approach 

The review above, while incomplete, suggests that identifying people by their gait from near-
horizontal but otherwise arbitrary directions is not a mature technique. Such identification has 
however been done with some success. 
 
Attempting to match body features created by clothing appears to be unreliable, at least for 
uncooperative subjects, because too many features are merely transient creases or shadows. 
Depending on these features reduces the usefulness of gait for identification at a distance. 
Without them, only the outline of the body is available for identifying feature points, so they 
may be limited to head, feet and main joints. Even then, loose clothing such as a skirt, robe or 
overcoat, and concurrent activities such as carrying a bag, will further limit what can be 
identified. 
 
Sections 3 and 4.4 above noted that it is possible to determine, from a video sequence from a 
camera directed obliquely from a position above head height, when and where the feet rested 
in the view and thence where they rested on the ground. For a suitably calibrated camera, if 
an object in the air is known to be vertically above another on the ground, its height can be 
determined too. There should then be enough information to decide details of stride and head 
height, just from the sequence of silhouettes. 
 
The next sections describe a method for gait analysis by silhouette extraction, partly inspired 
by the contribution of  Ben Abdelkader et al (2002). 
 
 

6. Silhouette extraction 

It will be assumed that a walker is detected and reduced to a silhouette before any gait 
analysis is performed. In this way, features of clothing take no part in the identification of 
body parts. Although the extraction of silhouettes is not the main subject of this report, some 
was needed in the early preparation of test data, and techniques were developed that could be 
useful in other experiments or security applications. 
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6.1 Raw detection 

The usual approach to detecting moving objects is to identify the background (assuming that 
any part of it is visible in most of the frames in the sequence) and then to detect which pixels 
in which frames differ from their background values and so belong to the foreground. The 
latter step is known as “background subtraction”. The use of colour is essential here. 
Identifying the background and keeping it up to date are non-trivial (especially outdoors) and 
will be taken as already done. 
 
The complications of identifying foreground pixels include: 
 
1. The presence of irrelevant moving objects such as clouds, vehicles, animals, vegetation that 

is disturbed by the wind and the lighting changes caused by all of these 
2. Shadows cast on the background by walking people 
3. Highlights caused by extra illumination of parts of the background by walking people 
4. Accidental resemblances of parts of people (including their clothing) to parts of the 

background 
 
The normalisation of colour images (so that all pixels have the same luminance, an 
appropriate weighted sum of the colour components) can greatly reduce the effects of 
shadows and other lighting changes, but it also blinds the detection process to major 
differences between the luminances of foreground objects and the background. 
 
Elgammal et al (2002) described a method of background identification and foreground 
detection in which allowance is made for weak shadows but stronger luminance changes are 
still recognised as differences. The colour components  BGR ,,  are transformed to two 
chromaticity variables and a lightness variable using 

 

 
 

  3/

/

/

BGRs

BGRGg

BGRRr





. 

If the transformed background values  are  bs , a pixel matches the background if 

 gr,  is close to bb gr ,
bb gr ,,

   and   s / bs , where   1,   is the range of lightness changes 

likely to be caused by shadows and highlights. Details of the definition of “closeness” here are 
submerged in the kernel density method, the main subject of the paper, but the approach 
suggests a “soft-thresholding” method. 
 
Let the lightness  be defined as above, or as some other suitably weighted mean, and let  

be its background value. Define the soft-thresholded value 

s bs

 

 

  





















ssss

ssss

ssss

s

bb

bbb

bb






,1

,

,1

. 

Equivalently, 
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 bbb sssssss 





 


2
12

1
2

1
 . 

The modified pixel colour 

    BGR
s

s
BGR ,,,,


  

matches the background colour if their brightness values agree within the allowed range of 
shadow and highlight and their chromaticity values match too. Larger brightness differences 
and any chromaticity differences are retained, and a distance measure between modified and 
background colour components, 
 bbb BBGGRRd  , 

can be compared to another threshold to decide whether the pixel is in the foreground. 
 
6.2 An orthogonal least-squares method 

If there are features in the background that can be recognised within a shadow or highlight, it 
may be possible to avoid treating strong shadows or highlights as foreground. 
This requires that part of the image within a window be compared to the same part of the 
background image, and that a correlation is detected between two sets of values. 
 
Suppose that values  in the background are compared with values  for the same pixels in 

the current image. If both sets of values are affected by similar random errors of measurement, 
and the values are to be fitted by a straight line 

ix iy

 sin,cos uyux   , it is appropriate to 
minimise the sum P  of squared perpendicular distances to this line. With allowance for 
different weighting of points in the sum, this takes the form 
  

P   2
cossin 

i
iii yxw   

      2sin2
2

1
2cos

2

1

2

1 2222  
i

iii
i

iii
i

iii yxwyxwyxw  

 
 2sin

2

1
2cos

2

1

2

1
210 SSS  , say 

  00 2cos
2

1

2

1   DS  

  (1) 
where 

),(2tan2 120

2
2

2
1

SSa

SSD






 

P  is minimised at  n 0 , which can be reduced to the range 







2
,

2


. Negative 0  

values indicate negative correlation, while values greatly exceeding 
4


 indicate excessive 

highlighting. 
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If the luminance ratio is constrained to the range 







T
T

,
1

 and tan  falls outside this range, P  

is minimised by setting tan  to the nearer end of the range and taking 

 2sgn 
/1

2
2sin,

/1

/1
2cos S

TTT

TT





 
T

 in equation (1). Otherwise the minimum value is 

 DS 02

1  . An excessive value of P indicates that the fit is poor and that the image values are 

not compatible with the background even under shadow or highlight conditions. 
 
This method can be efficiently implemented for images. The sums in equation (1) are done 
around all pixel positions by convolution. Colour is handled by treating the three bands as 

separate regions and combining their P  values. A 5x5 box filter, and a threshold of  

for 

 205.0

P , have been found partly effective for image values in the range  1,0 , but foreground 
detection remains error-prone, especially where a plain object lies in front of a plain 
background. 
 
6.3 Refinement 

If there are false background objects or “holes” in the true foreground, a useful technique is to 
take the raw silhouette frame, with pixel values say ‘0’ for background and ‘1’ for foreground, 
and find the 4-neighbour or 8-neighbour connected regions of foreground and background. 
Small regions of foreground can be changed to background to eliminate the clutter, and the 
remaining regions re-identified. Small regions of background can then be changed to 
foreground to fill holes. 
 
In the simplest case, only the largest foreground region is retained, then small background 
regions are removed. If there are two or more large objects present, a more sophisticated 
analysis is needed. 
 
 

7. The gait analysis method 

7.1 Background of the method 

The method of Ben Abdelkadar et al (2002) located the feet when they rested on the ground by 
looking for the gap between the legs, then deduced enough of the body position to determine 
stride, cadence, and the mean and amplitude of fluctuation of head height.  This technique 
worked for fronto-parallel views (where the walk was perpendicular to the line of sight) and 
for diagonal views, but for walks along the line of sight there may be little or no gap. A more 
general approach is needed for detecting where the feet land. 
 
When the ground is not moving and the camera is fixed and right way up, the most reliable 
features of feet are that they are near the bottom of the silhouette, that they have downward 
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facing edges, and that they do not move when they are on the ground. It will be assumed also 
that they are visible most of the time (though one leg can sometimes occlude the other). 
 
7.2 Footprint detection 

The following method is proposed for locating the footprints (resting positions of the feet) in 
image space and in time: 
 
1. In each frame, find the highest and lowest rows, and the leftmost and rightmost columns 

occupied by the silhouette. These form the “bounding box” of the silhouette. 
2. In each frame, apply an edge detector to the pixels in the bottom part of the bounding box 

(the actual fraction to be determined by experiment), retaining only positive values of the 

upward component found by convolution with the kernel . 

Generate zeros elsewhere. This detects pixels on the lower edge of the lower part of the 
silhouette, giving less weight where the edge is not horizontal. 








 
4/12/14/1

4/12/14/1

3. Sum the results over frames three times, once without weights, once with weights equal to 
frame numbers, and once with weights equal to frame numbers squared. This produces 
three images which record the sum of, and the first and second moments of frame number 
over, the edge values of each pixel. 

4. Smooth the three images using a Gaussian or similar low-pass filter. 
5. For pixels where the sum of edge values exceeds a suitable threshold, assume that a 

footprint is present and compute the mean and standard deviation of frame number from 
the sum and two moments. Then there are measures of when and for how long the 
footprint was occupied, for each relevant pixel. 

6. Retain the highest row number for each frame as a record of head height for later use. 
Record also the horizontal position of the top of the head, as it may have a subtle effect on 
height at a later stage. 

 
The above method can be applied in a single pass through the image sequence without 
retaining the contents of individual frames. (If there is any clutter in the silhouette frames, 
despite the attempt in step 4 to reduce it, it may produce false edges at inappropriate times 
and distort the results. If the outliers are  to be detected and removed, there may need to be 
further passes through the sequence.) 
 
There is nothing so far to distinguish walking from, say, sliding slowly across the view on ice 
skates. For walking, the footprint records for single pixels form clusters that are well 
separated in space and time. (Any overlap of contact times as the walker’s weight is 
transferred from one foot to the other is eliminated by using the mean frame number for each 
contact after step 5.) The clusters can be found as follows: 
 
1. Form a histogram of the mean frame numbers of all pixels where a footprint is present, 

with one bin for each frame. (An alternative would be to regress the row and column 
numbers on the mean frame numbers for these pixels and use the result to compute a “time 
of passage” for each pixel. The histogram would then be of the times of passage. This 
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approach was found to be too sensitive to errors in silhouette extraction, to changes in 
speed and direction of the walk, and to perspective effects.) 

2. Smooth the histogram using a combinatorial filter. With an appropriate degree of 
smoothing, the local maxima will mark footprint times and the local minima will represent 
threshold times between footprints. (See Figure 4.) 

3. For each footprint, delimited by thresholds from the previous step, assign to it pixels 
whose mean frame number is in the correct range. Combine their statistics of occupation to 
get a centroid in space and the mean and standard deviation of the frame numbers. 

 
The walk is now represented by a series of footprints, each with an image position and a 
frame number. These can be analysed to determine gait characteristics. (The centroid of the 
foot is in fact the centroid of the nearer parts of the edge of the foot, the further parts being 
occluded by the leg or rejected by the edge detection criteria. For the present application, this 
bias is not very important.) 
 
7.3 Gait features 

From the footprint information, some useful gait features can be extracted. Initially these will 
be measured in image coordinates and frame numbers; camera information will be used later. 
The features are determined as follows (See Figure 1): 
 
1. Half the displacement from a footprint to the footprint two paces later is the stride, 

represented as a pixel coordinate vector. 
2. Half the difference between the mean times of footprints two paces apart represents the 

stride time as a number of frames. 
3. The mean position of footprints one pace apart represents the approximate body position 

(as a point on the ground) at “double-stance”, when both feet are on the ground. The mean 
position of two double-stance positions one pace apart represents the approximate body 
position at “mid-stance”, as one leg swings past the other. 

4. The displacement from the body at mid-stance to the print of the foot on the ground, 
classified as being to the left or right of the stride vector, identifies the foot on the ground 
and hence the left or right identity of every footprint. Its magnitude is half the leg 
separation (the distance between the line of left footprints and the line of right footprints). 

5.  The body position on the ground at double-stance can be compared with the head height 
recorded from the frame at the mean time of the two consecutive footsteps. The height 
difference in image rows represents the head height above the ground when it is least. 

6. The body position on the ground at mid-stance can be compared with the head height 
recorded from the frame at the mean time of the one occupied footstep. The height 
difference in image rows represents the head height above the ground when it is greatest. 

7. If the distances stepped by the left and right feet are measured separately and parallel to 
the vector of stride, their difference, as a fraction of their sum, is a signed value that 
represents the degree to which one foot is preferred to the other, that is, of limp. 

8. The standard deviation of the frame numbers for which a footprint is occupied is 

approximately 12/1  of the time for which it is continuously occupied. (The estimate will 
be reduced slightly because the heel lands or lifts off before the toe does the same thing.) 
The times for which each footstep is occupied are therefore known as numbers of frames. If 
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the times are measured for the left and right feet separately, then their difference, as a 
fraction of their sum, is another measure of limp. (The signs of the two measures can be 
expected to agree.)  

9. The sum of the times for which footprints are occupied should be a little greater than the 
total time for an image sequence. The difference, as a fraction of the total time, is a measure 
of the tendency to reduce the contact time of each foot with the ground, a feature of 
running (or at least hurrying). 

 
For most of the above features, the estimate (or part of it) can be averaged over as many pairs 
of footprints as are available from the image sequence. 
 
Camera information is needed before gait features can be expressed in time and length units. 
In the simplest case, the view is a distant one and perspective effects can be ignored. Then 
only three quantities may be needed: the width of a pixel on the ground in length units, the 
depression angle of the camera, and the frame rate (frames per second) of the camera. From 
these, the height of a pixel is known, both as a distance on the ground away from the camera 
and as a distance along a vertical line near the walker.  
 
In the present work, perspective and radial lens distortions were found important. The lens 
distortion must be estimated by examining straight line features in the images, and corrected 
for in every measured  image coordinate. (Image warping is not required.) For the camera 
setup, the quantities needed are the depression angle, the distance to the ground at the image 
centre, the focal length relative to the pixel size in the sensor plane and the rotation of the 
camera about its axis ("swing"). There are other sets of quantities equivalent to this set. The 
size of a pixel then depends on the location in a frame. 
 
The following features are now available in world units or dimensionless form: 
1. The stride in length units, as a vector or a length 
2. The cadence, or number of steps a minute 
3. The speed in preferred units 
4. The leg separation 
5. The limp indication from lengths of steps 
6. The limp  indication from lengths of stance 
7. The run (or hurry) indication 
8. The minimum head height at double-stance in length units 
9. The maximum head height at mid-stance in length units 
 
7.4 Gait analysis of shadows 

Stoica (2008) recently considered the feasibility of using high angle views from aircraft or 
satellites to study gait from the shadows of walkers on the ground, early or late in the day. 
From such angles the view of the body of a walker is not suitable. 
 
Assuming that sufficient resolution is available, the shadows contain the same shape 
information as a low elevation view from the direction of the sun. If camera position, 
orientation and time are known, gait information can be extracted by the following steps: 
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1. Register the frames so that the ground is stationary. 
2. Extract the silhouettes so that the shadows are detected, rather than the bodies. 
3. Correct for camera tilt to give a vertical view of the ground, if this hasn’t been done as part 

of step 1. 
4. Rotate the frames so that the sun is casting the shadows in the upward direction. 
5. Calibrate the view by finding the size of a pixel on the ground (the same in the along-

shadow and cross-shadow directions) and the height of an object that casts a shadow one 
pixel long (from the sun elevation). 

6. Find the gait parameters in terms of image coordinates as before and convert to stride 
lengths and body heights using the modified calibration of step 5.  

 
For some camera angles there may be problems, for legs can effectively occlude the shadows 
of the feet. It might be better then to include the body in the silhouette. 
 
 

8. Tests on treadmill sequences 

8.1 Methods 

Initial tests were made using the MoBo database (Gross & Shi, 2001). This database provides 
many colour sequences of different subjects walking on a treadmill in several styles, viewed 
from several directions (Figure 2). The directions include walking directly and obliquely 
towards and away from the camera and straight across the picture. There is a single 
background frame for each sequence, and this is needed for parts of the background that are 
never visible during a walking sequence. 
 
Silhouettes are given for all sequences, but these sometimes include walkers’ shadows and 
effects of clutter. The techniques of Section 6.1 were tried and parameter settings were found 
that produced acceptable (but still imperfect) silhouette sequences for the five directions of 
walk just described (Figure 2). 
 
On a treadmill, a foot at rest still moves and produces no “footprint” in the sense of Section 3. 
It was therefore necessary to modify the sequences so that they appeared to be on a stationary 
surface. This was done by visual inspecting each sequence to find sub-sequences where a foot 
was resting, determining the velocity in image coordinates of the treadmill mat during the 
sub-sequences, then inserting frames from the sequence into larger images at different 
positions chosen to reduce the velocity of the resting feet to zero. The results were then sets of 
sequences of the same subject walking with identical gait in different directions. 
 
Figure 3 shows the sums of edge values formed during footprint extraction as in Section 3.2. 
Figure 4 shows the histogram of the mean frame numbers of footprint pixels, before and after 
smoothing. 
 
Camera calibration  was performed by locating in one frame of each sequence the corners of a 
floor tile near the treadmill and assuming that it was an orthographic projection of a 20 cm 
square tile. Perspective effects are evident in the frames but were ignored; some size estimates 
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were therefore subject to errors when the selected tile was not at the same distance from the 
camera as the walker. For a further check, walking speed values derived from the gait 
parameters could be compared with average treadmill speeds given in the database 
documentation. Because walker progress was simulated by image displacement, body height 
and stride were not affected by perspective. 
 
8.2 Results 

Analyses were compared for one subject viewed from several angles. Height and stride 
features were consistent between directions, but limp and running tendencies were not 
detectable among random fluctuation. 
 
 

9. Tests on conventional sequences 

9.1 Data collection 

Long video sequences were recorded in an indoor work area where many people pass to and 
fro, crossing the area in 12 steps or fewer. Shorter sequences, each showing a single passage, 
were extracted and the walkers identified by inspection. The sequences were converted to 
silhouettes by the method of Section 6.1, but it was found that the walkers could not be 
reliably distinguished from their backgrounds. Shadows, highlights and similarities of 
clothing and background all contributed to the problem. (In some sequences, feet passed 
behind foreground objects, creating false footprints at the tops of the objects. This fault is 
beyond the reach of background subtraction improvements.) 
 
The methods of Sections 6.2 and 6.3 were then tried, and much improvement was gained, but 
the silhouettes were still not reliable enough for the detection of heads and feet. To test the 
gait parameters of Section 7.3 as a personal identification method, or as a means of deciding 
whether two unknown walkers are the same person or not, a manual approach was tried.  
 
A simple software package was written to allow a human operator to step through a video 
sequence, find a walker and record in a file when and where each footstep started and ended, 
and where the top of the head was at each mid-stance or double-stance time. This "labelling" 
procedure was used on 204 sequences featuring 19 persons. It was often possible to judge 
where a foot landed even when it was hidden by a foreground object. The files produced were 
then used to generate synthetic silhouettes, one for each video frame, as shown in Figure 5. 
(These silhouettes were not intended to be realistic, merely to allow existing software to detect 
the relevant footprints and head positions. They proved adequate for that purpose.) 
 
The nine gait parameters of Section 7.3 were estimated and the walker identified for each 
sequence. Some walkers appeared much more frequently than others. 
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9.2 Confusion analysis 

The nine gait parameters have different physical dimensions and variabilities. Without doubt 
there is also a relationship between stride, cadence and speed, and another between minimum 
and maximum head heights. To allow variation between walkers to be compared with typical 
variation between sequences of one walker, the following procedure was followed: 
 
1. The mean parameter vector was found for each walker and subtracted from all vectors for 

that walker to give residual vectors. 
2. The covariance matrix for all the residual vectors was calculated, giving a measure of 

parameter variation and correlation averaged over all walkers. 
3. A linear transformation was applied to all parameter vectors so that the covariance matrix 

became a unit matrix, that is, the residual components became equally variant and 
uncorrelated. (This is the principal component approach applied to the residual vectors.) 

4. The Euclidean distance in the transformed vector space was used to compare vectors. 
 
In the ideal case where all walkers are the same person and the parameters follow a joint 
normal distribution, this procedure would lead to a squared Euclidean distance proportional 
to a chi-squared variate. In the present case, the distance can be compared with a threshold to 
decide whether two sequences are of the same walker or of two different ones. The procedure 
can be considered as target detection, where "target" means "difference in identity", "hit" 
means "detecting a real difference", and "false alarm" means  "deciding that two sequences of 
one walker are of different walkers". 
 
Since the identities of all walkers are known, hits and false alarms can be detected for the test 
data for each threshold value. All combinations of two sequences are tested. The  false alarm 
rate  is the fraction of pairs of sequences of the same walker for which the distance is 

above the threshold, while the detection rate  is the fraction of pairs of sequences of 
different walkers for which the distance is above the threshold. Both rates increase as the 
threshold is reduced, and they may be plotted against the threshold, or against each other as a 
Receiver Operating Characteristic (ROC). Figures 6 and 7 show examples of both plots. 

FAR

DR

 
The plots can be used in several ways.  If the gait parameters are useless for distinguishing 
walkers, the detection rates should be the same, with FAD RR   for the ROC. If they separate 

them well, there should be a threshold value for which  is close to 1 and  is close to 0. 
The ROC can show that such a value exists, while the other plot shows what value should be 
used for similar data. Further, if some of the gait parameters are removed from the data, or 
some of the principal components are removed because they are weak and represent the 
differences of correlated parameters, then the plots show how well the gait analysis performs 
without them. 

DR FAR

 
Plots were prepared for many subsets of the gait parameters or their principal components 
and compared. Of particular interest was the use of head heights alone, for without the other 
parameters the analysis is greatly simplified. The effect of having some walkers much more 
often than others was investigated by removing some records of the more frequent walkers 
from the analysis to partly equalise the frequencies. 
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9.3 Results 

The use of all nine gait parameters, shown in Figures 6 and 7, with a distance threshold near 5, 
allowed a pair of sequences in the collected data to be classified as "same walker" or "different 
walker" with error rates about 22% at the equal error point FAD RR 1 . Equalising the 
frequencies of walkers made little difference to this result. 
 
Using the head heights alone gave equal error rates close to 22% with a threshold of 2. Using 
just the minimum height increased the rates to about 28%. Using all gait parameters except the 
heights gave error rates about 35% at the equal error point with threshold 4, as shown in 
Figure 8.  
 
Removing the directions of the weakest principal components of the residual vectors made 
little difference to the error rates until three out of nine had been removed. After that the rates 
began to increase. With four components retained, the results were much worse than those for 
the two components derived from head heights alone. 
 
Scatter diagrams of pairs of gait parameters showed that some walkers were distinctive in 
some parameter values, and that those parameters might still be useful for separation of 
identities in a minority of cases. 
 
 

10. Discussion 

Clearly, for the selection of walkers in the test sequences, the two head heights are doing most 
of the work of distinguishing walkers. The extra work of extracting other gait parameters from 
video sequences, while it may sometimes improve the results, did not prove its worth in these 
experiments. 
 
Eliminating weaker principal components of the residual vectors from the data did not make a 
reliable improvement. The fact that four components gave worse results than two head 
heights suggests that this approach may remove parameters with low errors of measurement, 
when they should be retained for that same reason. 
 
Ben Abdelkader et al (2002) used a different evaluation technique for their results, finding that 
the correct walker out of 41 walkers appeared in the best 12 matches about 90% of the time, 
when they used the two head heights, cadence and stride. The evaluation appears more 
relevant to finding a person in a "gallery" of known persons. 
 
 

11. Conclusions 

A means of extracting measures that describe the gait of a person in a video sequence, 
regardless of the direction of walking, has been identified. It requires that the sequence be 
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obtained with a fixed camera looking down at a shallow angle from above head height, and 
reduced to a sequence of silhouettes.  
 
The ability of these measures to distinguish persons is mainly due to the estimation of their 
heights. The other measures are weak without the heights and make little difference when the 
heights are already in use, for the test sequences used. If further evidence of the usefulness of 
other gait parameters is required, a much larger set of test sequences will be needed. 
Ultimately, reliable results will depend on reliable, automatic silhouette extraction, which 
remains a difficult problem in some surveillance environments.  
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Figure 1. Gait analysis of a series of footprints. A-E are footprint positions. F-I are midway between 

consecutive footprints. J is midway between G and H. BDGH 2
1 is the stride vector 

and the corresponding time difference is the stride time. F marks a body position when the 

head is lowest, at K. J marks a body position when the head is highest, at L. JC  is to the left 

from GH , showing that C is a left footprint. M  is midway between B and D 
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Figure 2: A frame from the MoBo database and the silhouette extracted by the method of Section 6.1. 

 
Figure 3: Sums of edge values from the same treadmill sequence as Figure 2, modified to simulate 

ground walking. 
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Figure 4: Histogram of mean times of footprint pixels, before and after smoothing. 

       
 

 
Figure 5: Synthetic silhouette generation.. Top left: walker and scene. Top right: best real 

silhouette. Bottom: synthetic silhouette. 
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Figure 6: Detection and false alarm rates for detecting different identities, plotted against distance 

threshold when all gait parameters used 

 
Figure 7: ROC for detecting different identities when all gait parameters used.. 
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Figure 8: ROC for detecting different identities when gait parameters other than heights used.. 
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